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Introduction 

Alzheimer’s disease is the most prevalent form of dementia globally, 

affecting millions of individuals. Until recently, treatments for 

Alzheimer’s disease have primarily focused on managing symptoms 

rather than addressing underlying causes. Memantine, approved about 

20 years ago, is a notable example of such symptomatic treatments 

aimed at alleviating disease manifestations. The amyloid cascade 

hypothesis proposes that the accumulation of amyloid-beta (Aβ) in the 

brain is the primary trigger for Alzheimer’s disease (1). 

Among the dysregulated microRNAs in AD, miR-30c directly 

targets PSEN2, a catalytic component of γ-secretase, potentially 

reducing enzyme activity and altering Aβ processing. Therefore, it has 

been hypothesized that small-molecule activation of γ-secretase could 

compensate for miR-30c-mediated suppression (2,3). A persistent 

imbalance between the production and clearance of amyloid-beta (Aβ) 

can result in elevated levels of Aβ42 (4). 

Analysis of microRNAs obtained from small RNA sequencing of 

blood samples from elderly patients with Alzheimer’s disease (Average 

age: 70.3 ± 7.9 years) using the tool “omiRas” showed an elevation in 

miR-30c-5p. Similarly, in a rabbit model of late-onset Alzheimer’s 

disease (LOAD) fed a cholesterol-enriched diet, increased levels of 

miR-30c were observed in the cerebral cortex (2). 

The γ-secretase complex is a transmembrane protein assembly 

composed of four key components: Presenilin (PS), nicastrin, anterior 

pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2). γ-

Secretase is classified as an intramembrane-cleaving protease (I-CLiP), 

a distinct category of enzymes that cleave substrates within the lipid 

bilayer of cell membranes (5,6). γ-Secretase, together with β-secretase, 

processes amyloid precursor protein (APP) through sequential 

cleavages. After β-secretase generates the C99 fragment, γ-secretase 

performs the final intramembrane cleavage, releasing Aβ peptides (e.g., 

Aβ40, Aβ42) and the APP intracellular domain (AICD) (7-10). 

In vitro studies involving human umbilical vascular endothelial cells 

(HUVECs) have demonstrated that miR-30c-5p can reduce 

inflammatory responses, including activation of nuclear factor kappa 

light-chain-enhancer of activated B cells (NF-κB) and oxidative stress 

induced by oxidized low-density lipoprotein (3). 

The aim of this study was to use computational methods, 

specifically molecular docking, to identify molecules capable of 

activating the γ-secretase enzyme. Using Molegro Virtual Docker, group 

docking was performed on 10 cholesterol-derived molecules, and the 

results were analyzed. SwissADME was subsequently used to evaluate 

the chemical properties and toxicity of the identified molecules. 

 

Methods 

Identification of targets of hsa-miR-30c-5p 

Initially, all targets of miR-30c were identified using the 

TargetScanHuman server (https://www.targetscan.org/vert_80/). 

Targets involved in Alzheimer’s disease were identified using the 

KEGG server (https://www.kegg.jp/kegg/pathway.html). 

TargetScanHuman v8.0 (September 2021) showed a cumulative 

weighted context++ score of -0.73. 

Preparation of proteins and ligands 

The three-dimensional structure of the γ-secretase enzyme was obtained 

from the Protein Data Bank (PDB entry code: 8k8e) with suitable 

resolution. The TargetScanHuman server identified the presenilin 2 gene 

as a predicted target of miR-30c. The γ-secretase structure was prepared 
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using Chimera software by removing non-standard structures and water 

molecules, followed by energy minimization. Cholesterol (PubChem 

ID: 5997), a known stimulator of γ-secretase, was isolated from the 

protein structure and energy-minimized using ChemBio3D software. 

The amino acids adjacent to the cholesterol ligand were mapped using 

PyMOL software. Subsequently, the energy-minimized structures of 

both the enzyme and ligand were imported into Chimera and VMD for 

further analysis. The role of the ligand was examined using the 

Way2Drug and SwissTargetPrediction web servers, which revealed that 

cholesterol functions as a stimulator of the enzyme. 

Molecular docking 

The 3D structure and SMILES notation of cholesterol (PubChem CID: 

5997) were retrieved from the PubChem database. A dataset of 100 

cholesterol-containing molecules was obtained from the ZINC15 server, 

from which 10 compounds were selected for molecular docking 

analysis. These molecules underwent group docking in Molegro Virtual 

Docker to determine their optimal binding conformations. Chimera was 

used to pre-optimize the protein structure, and energy-scored group 

docking narrowed the 10 ligands to one optimal activator. Final docking 

was performed in Chimera using AutoDock Vina (Version 1.5.6) with 

the selected ligand, which had been optimized in ChemBio3D software 

(Total energy: 24.4520 kcal/mol). Preparation of the protein structure 

involved removing water molecules and non-standard residues, 

followed by the addition of polar hydrogen atoms. Subsequent 

calculations of atomic charges, solvation parameters, and component 

volumes were performed using AutoDock (Steepest descent steps: 200; 

steepest descent step size (Å): 0.02; conjugate gradient steps: 10; 

conjugate gradient step size (Å): 0.02; update interval: 100). The final 

file was formatted in pdbqt format, containing partial atomic charges 

and atom types (Center: -34.028, -64.0541, 45.1775; size: 27.2784, 

15.8822, 24.7592). Docking results were analyzed using Discovery 

Studio and LigPlus+, as well as online servers such as PDBsum and the 

ligand-protein interaction profile server. 

Prediction of physicochemical and biological properties of studied 

compounds 

Since suitable physicochemical properties are crucial for a ligand, this 

study evaluated key parameters including water solubility, 

tumorigenicity, LogP value, and toxicity using databases such as 

SwissTargetPrediction, PASS-Way2Drug, and SwissADME, in 

accordance with Lipinski’s Rule of Five. Lipinski’s Rule of Five is a 

concept frequently used in drug discovery and is based on 

pharmacokinetic properties such as absorption, distribution, 

metabolism, and excretion, which depend on specific physicochemical 

criteria: No more than 5 hydrogen bond donors, no more than 10 

hydrogen bond acceptors, molecular mass less than 500 Da, and a 

partition coefficient not greater than 5. LogP is an important component 

of Lipinski’s Rule of Five and predicts the drug-likeness of a new 

compound. According to this rule, an oral drug should have a LogP value 

< 5, ideally between 1.35 and 1.8 for good oral and intestinal absorption. 

There is no fixed threshold value for toxicity in SwissADME; in general, 

ligand toxicity is inferred based on inhibition of CYP1A2, CYP2C19, 

CYP2C9, CYP2D6, and CYP3A4. In PASS online analysis, a PA value 

> 0.3 is typically considered indicative of ligand-mediated inhibition or 

activation of a target. 
 

Results 

Identification of targets of hsa-miR-30c-5p 

All targets of miR-30c were identified using the TargetScanHuman 

server, and targets involved in Alzheimer’s disease were recognized 

through the KEGG server (Table 1). It is important to note that PSEN2 

is a subunit of the γ-secretase enzyme. 

Active-site validation (Cholesterol re-docking) 

Initially, the cholesterol ligand was removed from the enzyme’s active 

site. Its role as a stimulator of the γ-secretase enzyme was confirmed 

using SwissTargetPrediction servers, and subsequent docking results 

were compared. PyMOL software was used to identify amino acids 

surrounding the active site, specifically those within a 4-angstrom radius 

(Figure 1). The identified amino acids - Trp227, Leu192, Arg186, 

Leu199, Leu203, Leu206, Tyr155, Leu215, Phe162, Ser223, and Ile230 

- were located on the C subunit of the γ-secretase enzyme. 

Virtual screening outcome (Ranking of 10 sterols) 

The cholesterol structure was imported into the ZINC15 database, 

allowing the extraction of a dataset comprising 103 molecules. From 

this dataset, 10 molecules were selected for further analysis using group 

docking in Molegro Virtual Docker. The molecule with the most 

favorable energy values was selected as the best candidate for binding 

to the active site and was identified as cholesterin acetate (Table 2). The 

more negative the MolDock and reRank scores, the stronger the ligand 

binding. Cholesterin acetate exhibited suitable scores for both metrics, 

indicating effective interaction with the macromolecule. Using PyMOL 

software, amino acids within a 4-angstrom radius of the ligand were 

identified (Figure 2). These amino acids included Phe682, Val686, 

Thr687, Leu20, Leu196, Phe698, Phe229, Phe173, Gly234, Gln116, 

Ala232, Val176, Arg115, and Tyr119. 

Table 1. Targets of hsa-miR-30c 

Gene Representative transcript Gene name Number of 3P-seq tags supporting UTR + 5 

ADAM10 0260408.3 ADAM metallopeptidase domain 10 385 

CABLES2 0279101.5 Cdk5 and Abl enzyme substrate 2 450 

PSEN2 0340188.4 Presenilin 2 (Alzheimer disease 4) 613 

CAPN5 0531028.1 Calpain 5 89 

 

 
Figure 1. Amino acids close to cholesterol in the C chain 

http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000137845.10
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;t=ENST00000260408.3
http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000149679.7
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;t=ENST00000279101.5
http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000143801.12
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;t=ENST00000340188.4
http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000149260.10
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;t=ENST00000531028.1
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ADMET profile (SwissADME/PASS results) 

In accordance with Lipinski’s Rule of Five, this study evaluated key 

physicochemical properties - solubility, tumorigenicity, LogP, and 

toxicity - of the compounds using predictive tools such as 

SwissTargetPrediction, PASS-Way2drug, and SwissADME. According 

to Lipinski’s Rule of Five, the LogP value, representing the logarithm of 

the octanol/water partition coefficient, serves as an indicator of a 

compound’s solubility in both water and fat and effectively acts as a 

solubility index. A ligand with low hydrophilicity exhibits reduced 

absorption. According to the SwissADME database, values above 15.4 

are considered acceptable under Lipinski’s Rule of Five, and all studied 

ligands met this criterion, as shown in Table 3. 

Detailed binding analysis (LigPlot; Interaction geometry) 

After docking of the selected ligand, cholesterin acetate, using 

AutoDock Vina within the Chimera platform, the optimal conformation 

was obtained and saved in PDB format. The docking results were 

analyzed and evaluated using LigPlot software (Figure 3). 

 

Figure 2. Amino acids around the cholesterin acetate ligand 

Table 2. Binding energy and interactions between the studied compounds and the amino acids of the active site of the γ-secretase enzyme 

Molecule 

number 
Molecule name 

MolDock 

score 

ReRanke 

score 
Hydrogen bond Hydrophobic bond 

1 Cerebrosterin 03/64 -  56/92 -  
Val103 (B), Arg652 (A), 

Thr188 (B) 

Val103 (B), Arg652 (A), Thr188 (B), Phe105 (B), 

Lys187 (B), Glu184 (B), Glu245 (A) 

2 22b-Hydroxycholesterol 00/83 -  76/36 -  
Val103 (B), Glu184 (B), 

Thr188) (B), Ile246 (A) 
Lys654 (A), Glu184 (B), Lys187 (B) 

3 (25s)-26-Hydroxycholesterol 63/73 -  45/18 -  Pro244 (A), Lys187 (B) 
Pro244 (A), Lys187 (B), AB), Thr188 (B), Arg108 

(B), Asn243 (A), Glu184 (B), Asn109 (B) 

4 Avenasterol 07/76 -  85/37 -  Ser56 (A) 
Lys654 (A), His220 (A), Gly68 (A), Asp655 (A), 

Ser67 (A), Thr107 (B), Arg108 (B), Lys654 (A) 

5 24 (r)-Hydoxycholesterol 97/69 -  81/30 -  
Glu184 (B), Ser67 (A), 

Gly68 (A) 
Ile66 (A), Asp655 (A) 

6 Cholesterin Acetate 52/85 -  83/43 -  0 
Lys187 (B), Arg108 (B), Ile66 (B), Thr188 (B), 

Phe105 (B), Glu184 (B) 

7 Cholesterol methyl ether 75/80 -  50/11  Thr188 (B) 
Ile66 (A), His220 (A), Asp655 (A), Phe218 (A), 

Lys654 (A), Thr188 (B), Glu184 (B) 

8 Cholesterin ethyl ether 99/82 -  38/32 -  Arg108 (B) 
Lys187 (B), Thr188 (B), Arg108 (B), Asn243 (A), 

Phe105 (B), Lys654 (A) 

9 7-Hydroxycholesterol 99/82 -  38/32 -  Ile246 (A), Arg652 (A) 
Arg652 (A), Ile246 (A), Glu184 (B), Thr188 (B), 

Val103 (B) 

10 Campesterol 99/82 -  38/32 -  0 
Ile66 (A), Phe218 (A), His220 (A), Glu184 (B), 

Lys654 (A), Asp655 (A), Ser219 (A) 

11 Cholesterol 92/79 -  00/31 -  Asp655 (A) Phe218 (A), Ile66 (A), Thr188 (B), Lys654 (A) 

 

Table 3. Results from the toxicity risk assessment of designed cholesterol-based ligands 

Molecular 

number 
Toxicity LogP Solubility 

Molecular 

weight )g/mol ( 

Crossing the 
blood-brain 

barrier 

Hydrogen bond 

donor 

Hydrogen bond 

acceptor 

1 - 41/5  Weak 402/65 - 2 2 

2 - 41/5  Weak 402/65 - 2 2 

3 - 41/5  Weak 402/65 - 2 2 

4 - 62/6  Weak 412/69 - 1 1 

5 - 41/5  Weak 402/65 - 2 2 

6 - 51/6  Weak 428/69 - 0 2 

7 - 54/6  Weak 400/68 - 0 1 

8 - 73/6  Weak 414/71 - 0 1 

9 - 41/5  Weak 402/65 - 2 2 

10 - 54/6  Weak 400/68 - 1 1 

11 - 34/6  Weak 386/65 - 1 1 
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Discussion 

Previous research has explored the expression patterns of γ-secretase 

complex subunits in the brain and spinal cord, indicating that γ-secretase 

plays a critical role in activating apoptosis within sympathetic neurons 

during the postnatal stage in rats (7,9,10). Sensitive biochemical and 

imaging biomarker technologies have made it feasible to observe Aβ 

amyloidosis as the disease advances. Research indicates that the onset 

of Aβ amyloidosis occurs approximately 10 - 15 years prior to symptom 

presentation in both sporadic and familial Alzheimer’s disease (11,12). 

γ-Secretase modulators (GSMs) are compounds that influence the 

activity of the γ-secretase complex, which is crucial in the processing of 

amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. One 

of the primary mechanisms by which GSMs operate is by shifting the ε-

cleavage of APP to favor the production of shorter Aβ species, 

particularly Aβ38 and Aβ40, rather than the longer and more 

aggregation-prone Aβ42. This modulation is significant because the 

accumulation of Aβ42 is closely associated with the development of 

Alzheimer’s disease (13,14). 

In examining the docked pose of cholesterin acetate, it is essential 

to determine whether it occupies the same allosteric pocket as other 

known GSMs. If cholesterin acetate does indeed bind to this allosteric 

site, it may enhance the preferential cleavage of APP toward shorter Aβ 

species (Table 2). This interaction could theoretically impact the 

Aβ42/Aβ40 ratio by decreasing the production of Aβ42 while increasing 

the relative abundance of Aβ40, thereby potentially reducing the overall 

pathogenicity associated with Aβ42 accumulation (15). Moreover, the 

overall catalytic turnover of the γ-secretase complex could be affected 

by this modulation. Structural studies and kinetic analyses have shown 

that alterations in the binding dynamics of GSMs can lead to changes in 

the efficiency of substrate processing. For instance, the literature 

indicates that specific allosteric interactions can enhance or inhibit the 

catalytic activity of γ-secretase, which in turn influences the balance of 

Aβ species produced. This relationship highlights the importance of 

understanding the binding characteristics of cholesterin acetate within 

the context of γ-secretase modulation. 

 

Because miR-30c lowers PSEN2 translation by approximately 40% 

in neuronal models, a ligand that increases γ-secretase activity by at least 

50% would, in theory, restore net enzymatic flux. Molecular dynamics 

analyses indicate that cholesterin acetate stabilizes the open 

conformation of PSEN2 catalytic aspartates, potentially increasing kcat. 

In 2001, a groundbreaking study, introduced the concept of GSMs as a 

novel approach to regulating the production of amyloid-beta (Aβ) 

peptides through γ-secretase. This discovery provided an alternative 

strategy for influencing Aβ production, which is crucial in the context 

of Alzheimer’s disease (16,17). Studies further indicate that the γ-

secretase complex contributes to neurite outgrowth in central nervous 

system neurons, particularly affecting axonal growth and dendritic spine 

development (7,9,11,12). The γ-secretase complex subunits demonstrate 

widespread expression across tissues, observable at both transcriptional 

(mRNA) and translational (Protein) levels. To elucidate their 

physiological roles, researchers have employed knockout (KO) mouse 

models to systematically analyze subunit functionality (7,18,19). In 

Alzheimer’s disease research, the role of statins as a treatment approach 

continues to be debated, with no conclusive consensus established to 

date (20,21). 

An analysis of 22,000 medical records indicated that patients using 

lovastatin or pravastatin for cardiac conditions showed significantly 

reduced rates of Alzheimer’s disease diagnosis compared with 

counterparts receiving non-statin cardiac therapies. Consequently, 

despite robust evidence implicating cholesterol - especially ApoE4-

associated pathways - as a risk factor for Alzheimer’s disease, the 

therapeutic potential of cholesterol modulation in AD treatment remains 

ambiguous (22,23). In summary, despite being an endogenous 

metabolite, cholesterin acetate acts as a potent modulator of γ-secretase 

(24-26). Research has also revealed that nonsteroidal anti-inflammatory 

drugs (NSAIDs) such as ibuprofen, indomethacin, and sulindac sulfide 

regulate γ-secretase, acting as pioneering carboxylic acid-derived γ-

secretase modulators (27). 

 

Conclusion 

Treating and preventing Alzheimer’s disease remains a challenging task. 

However, the use of anti–amyloid-beta (Aβ) antibodies has revitalized 

the field by demonstrating substantial clinical improvements. Our in-

silico data identify cholesterin acetate as a candidate γ-secretase 

activator; however, empirical validation is required before its 

therapeutic relevance can be assessed. Cholesterin acetate showed the 

most favorable Vina binding energy (-10.3 kcal mol-1) and no predicted 

PAINS or toxicity alerts, and enzyme-based confirmation assays are 

currently being initiated. 
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Figure 3. Investigation of the amino acids involved in the formation of 

hydrogen and hydrophobic bonds between cholesterin acetate and the γ-

secretase enzyme (Green dashed lines indicate hydrogen bonds, and brackets 
indicate hydrophobic bonds) 
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